Towards a spin exchange collision-based optical quantum memory in noble gas spins

Alexander Erl^{1,2}, Norman Vincenz Ewald^{1,2}, Andrés Medina Herrera², Denis Uhland³, Wolfgang Kilian², Jens Voigt², Ilja Gerhardt³ and Janik Wolters^{1,4}

¹ Deutsches Zentrum für Luft- und Raumfahrt, Institute of Optical Sensor Systems, Berlin, Germany
² Physikalisch-Technische Bundesanstalt, 8.22 Metrology of Ultra-Low Magnetic Fields, Berlin, Germany
³ Leibniz University Hannover, Institute of Solid State Physics, Hannover, Germany

⁴ Technische Universität Berlin, Institute of Optics and Atomic Physics, Berlin, Germany

In recent years, significant progress has been made in the field of hot vapor quantum memories. A critical constraint on current systems is the maximally achievable storage time. Extending this storage time is necessary for a variety of quantum communication applications, e.g. unforgeable quantum tokens for authentication. We present our first steps towards a long-lived quantum memory based on a mixture of the noble gas ¹²⁹Xe and the alkali metal vapor ¹³³Cs confined in a temperature-controlled vapor cell. The required optical interface is based on electromagnetically induced transparency (EIT), which is implemented using a lambda scheme in the Zeeman sublevels of the long-lived hyperfine ground states of ¹³³Cs connected to an excited state via the D₁-line at 895 nm [1]. Spin-exchange collisions are envisioned to transfer the stored information from the alkali vapor to the noble gas [2]. The hours-long coherence time of ¹²⁹Xe [3] may enable the long-term storage of information as a collective atomic excitation.

- [1] L. Esguerra et al., Phys. Rev. A 107, 042607 (2023).
- [2] O. Katz et al., Phys. Rev. A 105, 042606 (2022)
- [3] C. Gemmel et al., Eur. Phys. J. D 57, 303–320 (2010)