Interfacing elements in a quantum network based on an atomic frequency standard

Tim Kroh¹, Esteban Gómez López¹, Andreas Ahlrichs¹, Chris Müller¹, Andreas Schell^{2,1}, Benjamin Sprenger^{3,1}, Janik Wolters^{4,1}, Alexander Thoma⁵, Stephan Reitzenstein⁵, Johannes Wildmann⁶, Rinaldo Trotta⁶, Armando Rastelli⁶, Oliver G. Schmidt⁷, and Oliver Benson¹

¹ HU Berlin, Germany, AG Nanooptik
² ICFO Barcelona, Spain
³ Menlo Systems GmbH, Martinsried, Germany
⁴ Universität Basel, Switzerland
⁵ TU Berlin, Germany
⁶ JKU Linz, Austria
⁷ IFW Dresden, Germany

Quantum memories will play a central part in synchronizing operational events in quantum networks, e.g. joint measurements between photons from different sources in order to implement entanglement swapping in quantum repeater protocols [1]. A promising platform relies on electromagnetically induced transparency (EIT) in atomic vapor. There, transitions in Rubidium or Cesium between 800 nm 900 nm provide a convenient wavelength to link the memories to other photon emitters like molecules or quantum dots [2]. In this way the most promising system for pure and fast few-photon sources, i.e., semiconductor quantum dots, can be linked to efficient storage devices in a hybrid approach. In our contribution we introduce our recent experimental results in this direction.

First, we demonstrate precise strain-tuning of InGaAs quantum dot emission between two 1.2 GHz hyperfine-split D1 transitions in Cesium vapor at room temperature. Then we show how single photons from the quantum dots can interact with a Cesium cell [3] providing a novel approach to access strong delays even close to room temperature. These recent experiments lay the ground for atomic vapor-based quantum memories in hybrid quantum networks [2] with storage times up to hundreds of microseconds and efficiencies of about 35 %.

In a second part of the contribution we also introduce our results concerning the conversion of single photons at Cesium wavelengths from quantum dots to the telecom band at 1550 nm [4]. Both experiments lay the ground for hybrid quantum networks involving atomic memories, semiconductor quantum dots, and long-distance fiber transfer.

- [1] H. J. Kimble, Nature **453**, 1023 (2008).
- [2] J. Wolters et al., Phys. Rev. Lett. **119**, 060502 (2017).
- [3] D. Höckel et al., Phys. Rev. Lett. **105**, 153605 (2010).
- [4] T. Kroh et al., Quantum Sci. Technol. 2, 034007 (2017).