Generalized electronics for vapor-cell atomic clocks

Claudio E. Calosso1, Michele Gozzellino1,2, Filippo Levi1, Aldo Godone1, Salvatore Micalizio1, Peter Yun4, Stephane Guerandel4, Monstafa Abdel Afiz3, Rodolphe Boudot3

1 Politecnico di Torino, Italy
2 Division of Physics Metrology, INRIM, Italy
3 FEMTO-ST Institute, Besancon, France
4 Observatoire de Paris, France

We present the electronics we developed in the frame of IND55 EMRP project [1] with the goal to support next generation sub-10\(^{-13}\) compact atomic clocks. In this regard, particular attention has been devoted to reduce the Dick/intermodulation effect in the low 10\(^{-14}\), very close to the shot-noise limit. The scheme can adapt to Cs and Rb clocks with minimal modifications. The digital implementation guarantees a high degree of flexibility that allows to run very different clock typologies and to implement innovative schemes such as the frequency lock of the laser to the internal cell or Auto-Balanced Ramsey to detect and compensate for light shift. This electronics has been successfully installed on the POP clock [2] at INRIM (Torino, Italy), DMCPT clock [3] at Syrte (Paris, France) and, recently, on the PPOP clock [4] at FEMTO-ST (Besancon, France).

![Block diagram of the generalized electronics](image)

Figure 1. Block diagram of the generalized electronics. It can subdivided into local oscillator and digital electronics. The dashed box contains the parts that are peculiar of each clock.