An optogalvanic flux sensor for trace gases

<u>J. Schmidt</u>^{1,2}, M. Fiedler¹, D. Djekic³, P. Schalberger², H. Baur², R. Löw¹, H. Kübler¹, J. Anders³, Edward Grant⁴, N. Frühauf², T. Pfau¹

Integrated Quantum Science and Technology, Universität Stuttgart ¹5. Physikalisches Institut ²Institut für Großflächige Mikroelektronik ²Institute of smart sensors ³University of British Columbia, Chemistry Department

E-mail: j.schmidt@physik.uni-stuttgart.de

We demonstrate the applicability of a new kind of gas sensor based on Rydberg excitations. From an arbitrary probe gas the molecule in question is excited to a Rydberg state, by succeeding collisions with all other gas components this molecule gets ionized and the emerging electron and ion can then be measured as a current, which is the clear signature of the presence of this particular molecule. As a first test

we excite Alkali Rydberg atoms in an electrically contacted vapor cell [1,2] and demonstrate sensitivities down to 100 ppb on a background of N2. We investigate different amplification circuits, ranging from solid state devices on the cell to thin film technology based transimpedance amplifiers inside the cell [3]. For a real life application, we employ our gas sensing scheme to the detection of nitric oxide in a background gas at thermal temperatures and atmospheric pressure.

References

- [1] D. Barredo, et al., *Phys. Rev. Lett.* **110**, 123002 (2013)
- [2] R. Daschner, et al., Opt. Lett. 37, 2271 (2012)
- [3] J. Schmidt, et al., AMFPD 24, 296-298 (2017)